
TA NOTES

38. Euler Equation. An equation of the form

t2y
′′

+ αty
′
+ βy = 0, t > 0,

where α and β are real constants, is called an Euler equation. Show that the substitution x = ln t

transform an Euler equation into an equation with constant coefficients.

Answer:

dx

dt
=

1

t

d2y

dt2
=

1

t2
d2y

dx2
− 1

t2
dy

dx

We get

t2y
′′

+ αty
′
+ βy =

d2y

dx2
+ (α− 1)

dy

dx
+ βy = 0.

In each of Problems, using the result of problem 38 to solve the given equation for t > 0.

40. t2y′′ + 4ty′ + 2y = 0

42. t2y′′ − 4ty′ − 6y = 0

Answer: 40. Let x = ln t, by Problem 38, we have

d2y

dx2
+ 5

dy

dx
+ 2y = 0 (1)

The characteristic equation of (1) is

r2 + 5r + 2 = 0

Thus the possible values of r are r1 = −5
2

+
√
17
2

and r2 = −5
2
−
√
17
2

, and the general solution of

the equation (1) is

y(x) = c1e
(− 5

2
+
√
17
2

)x + c2e
(− 5

2
−
√
17
2

)x.
1
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Then the solution of original equation is

y(t) = c1e
(− 5

2
+
√
17
2

) ln t + c2e
(− 5

2
−
√
17
2

) ln t

= c1t
− 5

2
+
√
17
2 + c2t

− 5
2
−
√
17
2

42. Let x = ln t, by Problem 38, we have

d2y

dx2
− 3

dy

dx
− 6y = 0 (1)

The characteristic equation of (1) is

r2 − 3r − 6 = 0

Thus the possible values of r are r1 = 3
2

+
√
33
2

and r2 = 3
2
−
√
33
2

, and the general solution of the

equation (1) is

y(x) = c1e
( 3
2
+
√
33
2

)x + c2e
( 3
2
−
√
33
2

)x.

Then the solution of original equation is

y(t) = c1e
( 3
2
+
√
33
2

) ln t + c2e
( 3
2
−
√
33
2

) ln t

= c1t
3
2
+
√
33
2 + c2t

3
2
−
√
33
2

33. The method of problem 20 can be extend to second order equation with variable coefficients.

If y1 is a known nonvanishing solution of y′′ + p(t)y′ + q(t)y = 0, show that a second solution

y2 satisfies (y2/y1)
′ = W (y1, y2)/y

2
1, where W (y1, y2) is the Wronskian of y1 and y2. Then use

Abel’s formula [Eq. (8) of section 3.3] to determine y2.

Answer: By direct computation, we have

(
y2
y1

)′ =
W (y1, y2)

y21
.

By Abel’s formula, W ′ = −pW , hence W = c1e
−
x∫
p(s)ds. Then

y2
y1

=

∫ x c1e
−

∫ t p(s)ds
y21(t)

dt+ c2

⇒ y2(x) = c1y1(x)

∫ x e−
∫ t p(s)ds
y21(t)

dt+ c2y1(x)
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In the following problem use the method of of problem 33 to find second independent solution

of the given equation.

35. ty′′ − y′ + 4t3y = 0; t > 0; y1(t) = sin(t2)

36. (x− 1)y′′ − xy′ + y = 0, x > 1, y1(x) = ex

Answer: 35. The original equation can be written as

y′′ −
t
y′ + 4t2y = 0.

From the Abel’s theorem

W (y1, y2) = c1e
∫
dt
t = c1t

We get

(
y2
y1

)′ =
W (y1, y2)

y21
=

c1t

sin2 t2

and

y2(t) = c1 sin(t2)

∫
t

sin2 t2
dt+ c2 sin(t2).

36. The original equation can be written as

y′′ − x

x− 1
y′ +

1

x− 1
y = 0.

Here p(x) = x
x−1 , q(x) = 1

x−1 . By the answer of problem, we get

y2(x) = c1y1(x)

∫ x e−
∫ t p(s)ds
y21(t)

dt+ c2y1(x)

= c1e
x

∫ x e−
∫ t s

s−1
ds

e2t
dt+ c2e

x

= c1e
x

∫ x

(t− 1)e−tdt+ c2e
x

= c1x+ c2e
x

28. Determined the general solution of

y′′ + λ2y =
N∑
m=1

am sinmπt, (i)

where λ > 0 and λ 6= mπ for m = 1, · · · , N .
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Answer: It is easy to know that the general solution to the corresponding homogeneous equation

is c1 cosλt+ c2 sinλt. If we find a particular solution, then we are done.

Note that, if ym(t) satisfy y′′m + λ2ym = am sinmπt, then, y(t) =
N∑
m=1

ym(t) is a particular

solution to the Eq. (i). Therefore, we reduce the problem to find a particular solution to

y′′m + λ2ym = am sinmπt (ii)

which is much easier. Clearly, we can assume that ym(t) = cm cosmπt+ dm sinmπt. Then

(λ2 −m2π2)cm cosmπt+ (λ2 −m2π2)dm sinmπt = am sinmπt.

Therefore, we can take

cm = 0, dm =
am

λ2 −m2π2
.

Then ym(t) =
am

λ2 −m2π2
sinmπt is a particular solution to the Eq. (ii). Hence

y(t) =
N∑
m=1

ym(t) =
N∑
m=1

am
λ2 −m2π2

sinmπt

is a particular solution to Eq. (i). Therefore, the general solution to the Eq. (i) is

y(t) = c1 cosλt+ c2 sinλt+
N∑
m=1

am
λ2 −m2π2

sinmπt.

30. Follow the instructions in Problem 29 to solve the differential equation

y′′ + 2y′ + 5y =

{
1, 0 ≤ t ≤ π/2,

0, t > π/2

with the initial conditions y(0) = 0 and y′(0) = 0.

Answer: The idea is that: Solve the equation in [0, π/2] with the initial condition y(0) = 0 and

y′(0) = 0 first. Then, solve the equation for t > π/2 with the initial condition y(π/2), y′(π/2).

The general solution of the corresponding ODE is c1e
−t cos 2t + c2e

−t sin 2t. For 0 < t < π/2,

the ODE is

y′′ + 2y′ + 5y = 1.
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A particular solution is Y = 1/5. Therefore, in [0, π/2], the general solution is

y(t) = c1e
−t cos 2t+ c2e

−t sin 2t+
1

5
, for 0 ≤ t ≤ π

2
.

Apply the initial condition, one can determined the c1 = −1/5, c2 = −1/10. That is in [0, π/2],

the solution is

y(t) = −1

5
e−t cos 2t− 1

10
e−t sin 2t+

1

5
, for 0 ≤ t ≤ π

2

It gives

y(
π

2
) = 1/5(1 + e−π/2), y′(

π

2
) = 0. (i)

For t > π/2, the ODE reads

y′′ + 2y′ + 5y = 0

The general solution is

y(t) = c1e
−t cos 2t+ c2e

−t sin 2t, for t ≥ π

2
.

Apply the initial condition (i), one has

c1 = −1

5
(1 + e

π
2 ), c2 = − 1

10
(1 + e

π
2 ).

Then, the solution for t > π/2 is

y(t) = −1

5
(1 + e

π
2 )e−t cos 2t− 1

10
(1 + e

π
2 )e−t sin 2t, for t ≥ π

2
.

Therefore the solutio to the original problem is

y(t) =


− 1

5
e−t cos 2t− 1

10
e−t sin 2t+

1

5
, for 0 ≤ t ≤ π

2

− 1

5
(1 + e

π
2 )e−t cos 2t− 1

10
(1 + e

π
2 )e−t sin 2t, for t ≥ π

2
.

38. If a, b, c are positive constants, show that all solutions of ay
′′

+ by
′
+ cy = 0 approach zero

as t→∞.

Answer: The characteristic equation is

ar2 − br + c = 0
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Case A: b2 − 4ac < 0

Thus the possible values of r are r1 = −b+i
√
4ac−b2

2a
and r2 = −b−i

√
4ac−b2

2a
, and the general solution

of the equation is

y(t) = e
−bt
2a (c1 cos

√
4ac− b2

2a
t+ c2 sin

√
4ac− b2

2a
t).

Hence, y(t)→ 0, as t→∞, since a, b are positive constants.

Case B: b2 − 4ac = 0

Thus the possible values of r are r1 = −b
2a

, and the general solution of the equation is

y(t) = e
−bt
2a (c1 + c2t).

Hence, y(t)→ 0, as t→∞, since a, b are positive constants.

Case C: b2 − 4ac > 0

Thus the possible values of r are r1 = −b+
√
b2−4ac
2a

and r2 = −b−
√
b2−4ac
2a

, and the general solution

of the equation is

y(t) = c1e
−b+
√
b2−4ac
2a + c2e

−b−
√
b2−4ac
2a .

Hence, y(t)→ 0, as t→∞, since a is positive constant and −b+
√
b2 − 4ac < 0.

Consider the differential equation

ay′′ + by′ + cy = g(t) (i)

where a, b and c are positive.

31. If Y1(t) and Y2(t) are solutions of Eq. (i), show that Y1(t) − Y2(t) → 0 as t → ∞. Is this

result true if b = 0?

Answer: Let u = Y1(t)− Y2(t), clearly, u is the solution of the homogeneous equation

ay′′ + by′ + cy = 0.

Hence by the problem 38 of section 3.5, we know that

Y1(t)− Y2(t) = u(t)→ 0.

By (a) part of problem 39 of section 3.5, we know that the result is false for b = 0.
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vskip 1cm In each of the problems verify that the given functions y1 and y2 satisfy the cor-

responding homogeneous equation; then find a particular solution of the given nonhomogeneous

equation.

14. t2y′′ − t(t+ 2)y′ + (t+ 2)y = 2t3, t > 0; y1 = t, y2 = tet

16. (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1; y1 = et, y2 = t

19. (1− x)y′′ + xy′ − y = g(x), 0 < x < 1; y1 = ex, y2 = x

Answer: 14. It is easy to check that y1 and y2 satisfy

t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0.

W (y1, y2) = t2et and let

Y (t) = −t
∫
ses2s

s2es
ds+ tet

∫
s2s

s2es
ds

= −2t2 − 2t.

then a particular solution of the original equation is

y(t) = −2t2 − 2t.

16. It is easy to check that y1 and y2 satisfy

(1− t)y′′ + ty′ − y = 0

W (y1, y2) = et(1− t) and let

Y (t) = −et
∫
s2(1− s)e−s

(1− s)es
ds+ t

∫
es2(1− s)e−s

(1− s)es
ds

= −te−t +
1

2
e−t.

then a particular solution of the original equation is

y(t) = −te−t +
1

2
e−t.

19. It is easy to check that y1 and y2 satisfy

(1− x)y′′ + xy′ − y = 0
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W (y1, y2) = (1− x)ex and let

Y (t) = −ex
∫

g(s)s

(1− s)2es
ds+ x

∫
g(s)es

(1− s)2es
ds

= −ex
∫

g(s)s

(1− s)2es
ds+ x

∫
g(s)

(1− s)2
ds.

then a particular solution of the original equation is

y(t) = −ex
∫

g(s)s

(1− s)2es
ds+ x

∫
g(s)

(1− s)2
ds.


