TA NOTES

38. Euler Equation. An equation of the form

$$
t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0, t>0
$$

where α and β are real constants, is called an Euler equation. Show that the substitution $x=\ln t$ transform an Euler equation into an equation with constant coefficients.
Answer:

$$
\begin{gathered}
\frac{d x}{d t}=\frac{1}{t} \\
\frac{d^{2} y}{d t^{2}}=\frac{1}{t^{2}} \frac{d^{2} y}{d x^{2}}-\frac{1}{t^{2}} \frac{d y}{d x}
\end{gathered}
$$

We get

$$
t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=\frac{d^{2} y}{d x^{2}}+(\alpha-1) \frac{d y}{d x}+\beta y=0
$$

In each of Problems, using the result of problem 38 to solve the given equation for $t>0$.
40. $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0$
42. $t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y=0$

Answer: 40. Let $x=\ln t$, by Problem 38, we have

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+2 y=0 \tag{1}
\end{equation*}
$$

The characteristic equation of (1) is

$$
r^{2}+5 r+2=0
$$

Thus the possible values of r are $r_{1}=-\frac{5}{2}+\frac{\sqrt{17}}{2}$ and $r_{2}=-\frac{5}{2}-\frac{\sqrt{17}}{2}$, and the general solution of the equation (1) is

$$
y(x)=c_{1} e^{\left(-\frac{5}{2}+\frac{\sqrt{17}}{2}\right) x}+c_{2} e^{\left(-\frac{5}{2}-\frac{\sqrt{17}}{2}\right) x} .
$$

Then the solution of original equation is

$$
\begin{array}{rlr}
y(t) & =c_{1} e^{\left(-\frac{5}{2}+\frac{\sqrt{17}}{2}\right) \ln t}+c_{2} e^{\left(-\frac{5}{2}-\frac{\sqrt{17}}{2}\right) \ln t} \\
& = & c_{1} t^{-\frac{5}{2}+\frac{\sqrt{17}}{2}}+c_{2} t^{-\frac{5}{2}-\frac{\sqrt{17}}{2}}
\end{array}
$$

42. Let $x=\ln t$, by Problem 38, we have

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-6 y=0 \tag{1}
\end{equation*}
$$

The characteristic equation of (1) is

$$
r^{2}-3 r-6=0
$$

Thus the possible values of r are $r_{1}=\frac{3}{2}+\frac{\sqrt{33}}{2}$ and $r_{2}=\frac{3}{2}-\frac{\sqrt{33}}{2}$, and the general solution of the equation (1) is

$$
y(x)=c_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{33}}{2}\right) x}+c_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{33}}{2}\right) x} .
$$

Then the solution of original equation is

$$
\begin{aligned}
y(t) & =c_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{33}}{2}\right) \ln t}+c_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{33}}{2}\right) \ln t} \\
& =c_{1} t^{\frac{3}{2}+\frac{\sqrt{33}}{2}}+c_{2} t^{\frac{3}{2}-\frac{\sqrt{33}}{2}}
\end{aligned}
$$

33. The method of problem 20 can be extend to second order equation with variable coefficients. If y_{1} is a known nonvanishing solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, show that a second solution y_{2} satisfies $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$, where $W\left(y_{1}, y_{2}\right)$ is the Wronskian of y_{1} and y_{2}. Then use Abel's formula [Eq. (8) of section 3.3] to determine y_{2}.

Answer: By direct computation, we have

$$
\left(\frac{y_{2}}{y_{1}}\right)^{\prime}=\frac{W\left(y_{1}, y_{2}\right)}{y_{1}^{2}} .
$$

By Abel's formula, $W^{\prime}=-p W$, hence $W=c_{1} e^{-\int^{x} p(s) d s}$. Then

$$
\begin{aligned}
\frac{y_{2}}{y_{1}} & =\int^{x} \frac{c_{1} e^{-\int^{t} p(s) d s}}{y_{1}^{2}(t)} d t+c_{2} \\
\Rightarrow y_{2}(x) & =c_{1} y_{1}(x) \int^{x} \frac{e^{-\int^{t} p(s) d s}}{y_{1}^{2}(t)} d t+c_{2} y_{1}(x)
\end{aligned}
$$

In the following problem use the method of of problem 33 to find second independent solution of the given equation.
35. $t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0 ; t>0 ; y_{1}(t)=\sin \left(t^{2}\right)$
36. $(x-1) y^{\prime \prime}-x y^{\prime}+y=0, x>1, y_{1}(x)=e^{x}$

Answer: 35. The original equation can be written as

$$
y^{\prime \prime}-\frac{-}{t} y^{\prime}+4 t^{2} y=0
$$

From the Abel's theorem

$$
W\left(y_{1}, y_{2}\right)=c_{1} e^{\int \frac{d t}{t}}=c_{1} t
$$

We get

$$
\left(\frac{y_{2}}{y_{1}}\right)^{\prime}=\frac{W\left(y_{1}, y_{2}\right)}{y_{1}^{2}}=\frac{c_{1} t}{\sin ^{2} t^{2}}
$$

and

$$
y_{2}(t)=c_{1} \sin \left(t^{2}\right) \int \frac{t}{\sin ^{2} t^{2}} d t+c_{2} \sin \left(t^{2}\right)
$$

36. The original equation can be written as

$$
y^{\prime \prime}-\frac{x}{x-1} y^{\prime}+\frac{1}{x-1} y=0 .
$$

Here $p(x)=\frac{x}{x-1}, q(x)=\frac{1}{x-1}$. By the answer of problem, we get

$$
\begin{aligned}
y_{2}(x) & =c_{1} y_{1}(x) \int^{x} \frac{e^{-\int^{t} p(s) d s}}{y_{1}^{2}(t)} d t+c_{2} y_{1}(x) \\
& =\quad c_{1} e^{x} \int^{x} \frac{e^{-\int^{t} \frac{s}{s-1} d s}}{e^{2 t}} d t+c_{2} e^{x} \\
& =\quad c_{1} e^{x} \int^{x}(t-1) e^{-t} d t+c_{2} e^{x} \\
& =\quad c_{1} x+c_{2} e^{x}
\end{aligned}
$$

28. Determined the general solution of

$$
\begin{equation*}
y^{\prime \prime}+\lambda^{2} y=\sum_{m=1}^{N} a_{m} \sin m \pi t \tag{i}
\end{equation*}
$$

where $\lambda>0$ and $\lambda \neq m \pi$ for $m=1, \cdots, N$.

Answer: It is easy to know that the general solution to the corresponding homogeneous equation is $c_{1} \cos \lambda t+c_{2} \sin \lambda t$. If we find a particular solution, then we are done.

Note that, if $y_{m}(t)$ satisfy $y_{m}^{\prime \prime}+\lambda^{2} y_{m}=a_{m} \sin m \pi t$, then, $y(t)=\sum_{m=1}^{N} y_{m}(t)$ is a particular solution to the Eq. (i). Therefore, we reduce the problem to find a particular solution to

$$
\begin{equation*}
y_{m}^{\prime \prime}+\lambda^{2} y_{m}=a_{m} \sin m \pi t \tag{ii}
\end{equation*}
$$

which is much easier. Clearly, we can assume that $y_{m}(t)=c_{m} \cos m \pi t+d_{m} \sin m \pi t$. Then

$$
\left(\lambda^{2}-m^{2} \pi^{2}\right) c_{m} \cos m \pi t+\left(\lambda^{2}-m^{2} \pi^{2}\right) d_{m} \sin m \pi t=a_{m} \sin m \pi t
$$

Therefore, we can take

$$
c_{m}=0, \quad d_{m}=\frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}} .
$$

Then $y_{m}(t)=\frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}} \sin m \pi t$ is a particular solution to the Eq. (ii). Hence

$$
y(t)=\sum_{m=1}^{N} y_{m}(t)=\sum_{m=1}^{N} \frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}} \sin m \pi t
$$

is a particular solution to Eq. (i). Therefore, the general solution to the Eq. (i) is

$$
y(t)=c_{1} \cos \lambda t+c_{2} \sin \lambda t+\sum_{m=1}^{N} \frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}} \sin m \pi t
$$

30. Follow the instructions in Problem 29 to solve the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y= \begin{cases}1, & 0 \leq t \leq \pi / 2 \\ 0, & t>\pi / 2\end{cases}
$$

with the initial conditions $y(0)=0$ and $y^{\prime}(0)=0$.
Answer: The idea is that: Solve the equation in $[0, \pi / 2]$ with the initial condition $y(0)=0$ and $y^{\prime}(0)=0$ first. Then, solve the equation for $t>\pi / 2$ with the initial condition $y(\pi / 2), y^{\prime}(\pi / 2)$.

The general solution of the corresponding ODE is $c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. For $0<t<\pi / 2$, the ODE is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=1
$$

A particular solution is $Y=1 / 5$. Therefore, in $[0, \pi / 2]$, the general solution is

$$
y(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+\frac{1}{5}, \quad \text { for } 0 \leq t \leq \frac{\pi}{2}
$$

Apply the initial condition, one can determined the $c_{1}=-1 / 5, c_{2}=-1 / 10$. That is in $[0, \pi / 2]$, the solution is

$$
y(t)=-\frac{1}{5} e^{-t} \cos 2 t-\frac{1}{10} e^{-t} \sin 2 t+\frac{1}{5}, \quad \text { for } 0 \leq t \leq \frac{\pi}{2}
$$

It gives

$$
\begin{equation*}
y\left(\frac{\pi}{2}\right)=1 / 5\left(1+e^{-\pi / 2}\right), \quad y^{\prime}\left(\frac{\pi}{2}\right)=0 . \tag{i}
\end{equation*}
$$

For $t>\pi / 2$, the ODE reads

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The general solution is

$$
y(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t, \quad \text { for } t \geq \frac{\pi}{2}
$$

Apply the initial condition (i), one has

$$
c_{1}=-\frac{1}{5}\left(1+e^{\frac{\pi}{2}}\right), \quad c_{2}=-\frac{1}{10}\left(1+e^{\frac{\pi}{2}}\right) .
$$

Then, the solution for $t>\pi / 2$ is

$$
y(t)=-\frac{1}{5}\left(1+e^{\frac{\pi}{2}}\right) e^{-t} \cos 2 t-\frac{1}{10}\left(1+e^{\frac{\pi}{2}}\right) e^{-t} \sin 2 t, \quad \text { for } t \geq \frac{\pi}{2}
$$

Therefore the solutio to the original problem is

$$
y(t)=\left\{\begin{array}{l}
-\frac{1}{5} e^{-t} \cos 2 t-\frac{1}{10} e^{-t} \sin 2 t+\frac{1}{5}, \quad \text { for } 0 \leq t \leq \frac{\pi}{2} \\
-\frac{1}{5}\left(1+e^{\frac{\pi}{2}}\right) e^{-t} \cos 2 t-\frac{1}{10}\left(1+e^{\frac{\pi}{2}}\right) e^{-t} \sin 2 t, \quad \text { for } t \geq \frac{\pi}{2}
\end{array}\right.
$$

38. If a, b, c are positive constants, show that all solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$ approach zero as $t \rightarrow \infty$.

Answer: The characteristic equation is

$$
a r^{2}-b r+c=0
$$

6
Case A: $b^{2}-4 a c<0$
Thus the possible values of r are $r_{1}=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}$ and $r_{2}=\frac{-b-i \sqrt{4 a c-b^{2}}}{2 a}$, and the general solution of the equation is

$$
y(t)=e^{\frac{-b t}{2 a}}\left(c_{1} \cos \frac{\sqrt{4 a c-b^{2}}}{2 a} t+c_{2} \sin \frac{\sqrt{4 a c-b^{2}}}{2 a} t\right) .
$$

Hence, $y(t) \rightarrow 0$, as $t \rightarrow \infty$, since a, b are positive constants.

Case B: $b^{2}-4 a c=0$
Thus the possible values of r are $r_{1}=\frac{-b}{2 a}$, and the general solution of the equation is

$$
y(t)=e^{\frac{-b t}{2 a}}\left(c_{1}+c_{2} t\right)
$$

Hence, $y(t) \rightarrow 0$, as $t \rightarrow \infty$, since a, b are positive constants.

Case C: $b^{2}-4 a c>0$
Thus the possible values of r are $r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$, and the general solution of the equation is

$$
y(t)=c_{1} e^{\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}}+c_{2} e^{\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}} .
$$

Hence, $y(t) \rightarrow 0$, as $t \rightarrow \infty$, since a is positive constant and $-b+\sqrt{b^{2}-4 a c}<0$.

Consider the differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{i}
\end{equation*}
$$

where a, b and c are positive.
31. If $Y_{1}(t)$ and $Y_{2}(t)$ are solutions of Eq. (i), show that $Y_{1}(t)-Y_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Is this result true if $b=0$?
Answer: Let $u=Y_{1}(t)-Y_{2}(t)$, clearly, u is the solution of the homogeneous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

Hence by the problem 38 of section 3.5, we know that

$$
Y_{1}(t)-Y_{2}(t)=u(t) \rightarrow 0
$$

By (a) part of problem 39 of section 3.5, we know that the result is false for $b=0$.
vskip 1 cm In each of the problems verify that the given functions y_{1} and y_{2} satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation.
14. $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}, t>0 ; y_{1}=t, y_{2}=t e^{t}$
16. $(1-t) y^{\prime \prime}+t y^{\prime}-y=2(t-1)^{2} e^{-t}, 0<t<1 ; y_{1}=e^{t}, y_{2}=t$
19. $(1-x) y^{\prime \prime}+x y^{\prime}-y=g(x), 0<x<1 ; y_{1}=e^{x}, y_{2}=x$

Answer: 14. It is easy to check that y_{1} and y_{2} satisfy

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0
$$

$W\left(y_{1}, y_{2}\right)=t^{2} e^{t}$ and let

$$
\begin{gathered}
Y(t)=-t \int \frac{s e^{s} 2 s}{s^{2} e^{s}} d s+t e^{t} \int \frac{s 2 s}{s^{2} e^{s}} d s \\
=-2 t^{2}-2 t
\end{gathered}
$$

then a particular solution of the original equation is

$$
y(t)=-2 t^{2}-2 t .
$$

16. It is easy to check that y_{1} and y_{2} satisfy

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=0
$$

$W\left(y_{1}, y_{2}\right)=e^{t}(1-t)$ and let

$$
\begin{gathered}
Y(t)=-e^{t} \int \frac{s 2(1-s) e^{-s}}{(1-s) e^{s}} d s+t \int \frac{e^{s} 2(1-s) e^{-s}}{(1-s) e^{s}} d s \\
=-t e^{-t}+\frac{1}{2} e^{-t}
\end{gathered}
$$

then a particular solution of the original equation is

$$
y(t)=-t e^{-t}+\frac{1}{2} e^{-t}
$$

19. It is easy to check that y_{1} and y_{2} satisfy

$$
(1-x) y^{\prime \prime}+x y^{\prime}-y=0
$$

$W\left(y_{1}, y_{2}\right)=(1-x) e^{x}$ and let

$$
\begin{aligned}
Y(t) & =-e^{x} \int \frac{g(s) s}{(1-s)^{2} e^{s}} d s+x \int \frac{g(s) e^{s}}{(1-s)^{2} e^{s}} d s \\
& =-e^{x} \int \frac{g(s) s}{(1-s)^{2} e^{s}} d s+x \int \frac{g(s)}{(1-s)^{2}} d s
\end{aligned}
$$

then a particular solution of the original equation is

$$
y(t)=-e^{x} \int \frac{g(s) s}{(1-s)^{2} e^{s}} d s+x \int \frac{g(s)}{(1-s)^{2}} d s
$$

